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INTRODUCTION 

The contribution of carbonyls from oxidized fats or oils to off-

flavor development has been well documented. A rapid, sensitive, and 

reliable method for the determination of these flavor compounds, however, 

has proved elusive, especially because of the ease with which hydroper­

oxides can generate additional carbonyl compounds during isolation 

procedures. 

This thesis reports the development of a rapid, quantitative method 

for carbonyl determinations. Carbonyl artifacts produced by the procedure 

were studied by comparing the carbonyl analyses obtained before and 

after reduction of hydroperoxides. 
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REVIEW OF LITERATURE 

The deterioration of lipids and lipid-containing foods is primarily 

due to the reaction of oxygen with the unsaturated fatty acids in the 

lipids. The major initial reaction products formed are hydroperoxides 

(Dugan, 1976; Gray, 1978; Lundberg, 1962). Decomposition of the hydro­

peroxides occurs readily by a free radical mechanism, forming a variety 

of secondary scission products. 

R—C—R  ̂ R—C—R 

R-C-R + R OH R-C-R + R R« + R-C=0 R-C-R + R II 

aldehydes ketones alcohols 

Some of the hydroperoxide decomposition products are radicals and 

are capable of promoting further oxidation of hydroperoxides. Others 

include compounds such as carbonyls, alcohols, semialdehydes, acids, 

hydrocarbons, lactones, and esters (Lillard and Day, 1961). These 

secondary scission products can be further oxidized. Esters, lactones, 

carbonyl compounds and acids are the predominant products (El-Magoli 

et al., 1979; Michalski and Hammond, 1972). A detailed review of the 

possible mechanisms for formation of many of these compounds was presented 

by Michalski (1971). 

Starting in the 1930s, many objective techniques were developed to 

study oxidative deterioration in fats, in the hope of correlating these 
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results with off-flavor development as measured by sensory panels (Gray, 

1978). Sensory techniques changed little after first being established 

by workers at the United States Department of Agriculture, Northern 

Regional Research Laboratory, in 1945, but the objective methods varied 

widely (Stone, 1981). 

the most common chemical methods for estimating lipid oxidation, 

included the peroxide value (PV), the thiobarbituric acid test (TBA), 

oxirane determination, and the Kreis test. Several physical methods 

were also helpful in measuring oxidative deterioration in fats. The 

conjugated diene method was based on an increased ultraviolet absorption 

with increasing oxidation of polyunsaturated fatty acids. Fluorescence, 

infrared spectrophotometry, and refractometry also were used. The 

limitations of these methods were reviewed by Gray (1978). Lack of 

specificity, poor accuracy, poor method development, and measurement 

inconsistencies limit the usefulness of these methods. In general, these 

methods measure total oxidation of the fat, with no attempt to study 

individual breakdown components. 

More recently, gas chromatography (GC) has been used in evaluating 

oil flavor. In 1966, Scholz and Ptak correlated flavor scores with 

pentane values measured by direct injection into the GC. Good correla­

tions were reported. Warner et al. (1978) found good correlations for 

soybean oil between flavor scores and the development of pentanal and 

hexanal. Considerable effort also was given to the measurement of total 

volatiles (TV). Various techniques, including distillation and direct 

injection, proved useful. Dupuy et al. (1977) as well as Jackson and 
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Giacherlo (1977) demonstrated excellent correlations of flavor scores 

with TV from oils. An extensive review of these and other GC methods is 

given by Stone (1981). These GC procedures are useful in estimating the 

degree of rancidity in an oil (Gray, 1978). However, the methods 

estimate overall deterioration and do not attençt to examine individual 

components in the oxidizing oils. In addition, some of the volatiles that 

are measured are produced from the breakdown of unstable hydroperoxides. 

Thus, what is being measured are volatiles produced by the method, as 

well as volatiles initially present. Since off-flavor is produced by 

carbonyl compounds and not hydroperoxides, these methods are not a direct 

measure of off-flavor (Badings, 1960; El-Magoli et al., 1979). 

An alternative approach to measuring overall oxidation of fats is 

to measure the carbonyl compounds formed by the degradation of the 

hydroperoxides. In 1951, Pool and Klose published a method for the 

determination of monocarbonyl compounds in the benzene-soluble fraction 

of rancid foods. This quantitative procedure was based on the formation 

of 2,4-dinitrophenylhydrazones (DNPH's) of monocarbonyl compounds in 

benzene solution, the removal of excess hydrazine reagent and the 

hydrazones of dicarbonyl compounds with alumina, and the colorimetric 

determination of the remaining DNPH's.̂  

A method published in 1954 by Henick et al. was widely used. In 

this procedure, carbonyl compounds were converted to DNPH's in the 

presence of a trichloroacetic acid catalyst. This method was criticized 

because hydroperoxides decomposed under the experimental conditions (Lea, 

1962). A quantitative determination of the oxidation products was not. 
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then, possible. Mizuno and Ghlpault (1965) attempted to improve this 

method by using a stannous chloride reagent to reduce the hydroper­

oxides prior to carbonyl determination. Fioriti (1965), however, 

reported that the reduction generated additional carbonyl compounds, as 

well as being time-consuming. He suggested that interference from 

hydroperoxides could be reduced by forming the DNPH's at 5°C. However, 

under these conditions, the reaction took 20 h. 

Gaddis and Ellis (1959a) developed a method to separate DNPH's by 

paper chromatography. They were able to resolve 2-ketone, saturated 

aldehydes, 2-enal, and 2,4-dienal derivatives. Gaddis et al. (1959) 

applied this method to fat analyses by steam distilling fat, using a 

micro apparatus, into a DNPH solution in 2N hydrochloric acid. The 

DNPH's were extracted and the absorbancy was read in a spectrophotometer 

Chromatography on alumina was used to separate the monocarbonyls and 

dicarbonyls, followed by resolution of the monocarbonyls into classes by 

the paper chromatography method. The paper chromatograms were extracted 

and the carbonyls in each class determined by spectrophotometry. The 

total and monocarbonyl values correlated fairly well with PV for cured 

and uncured pork. 

Gaddis and Ellis (1959b) applied their paper chromatographic system 

to identifying the carbonyls in heated and unheated rancid pork fat. 

Heating the fat to 165''G reduced the saturated aldehydes from 82% to 

40%, but the 2-enals, and especially the 2,4-dienals increased upon 

heating. A comparison of methods of isolating and estimating carbonyl 

compounds in oxidized pork fat was made by Gaddis et al. (1960). 
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Initial reaction with the Girard T reagent Isolated 64% of the total 

carbonyls measured by the method of Henick et al. (1954). Carbonyls were 

also isolated by steam distillation, vacuum distillation, and the Pool 

and Klose method (Pool and Klose, 1951). Steam distillation gave the 

highest measure of carbonyls, followed by Pool and Klose and then vacuum 

distillation. The study indicated that most of the carbonyls were not 

volatile, and that a large part of the carbonyls did not exist, as such, 

in the oxidized fats. Seemingly, they were produced through breakdown 

of precursors by the conditions of isolation and derivative formation. 

These results emphasized the need for a reliable method of isolating and 

determining the free total carbonyls in fat. 

The volatile monocarbonyls produced by oleate, llnoleate, linolenate 

and various fats were characterized by Ellis et al. (1961), using the 

method of Gaddis et al. (1959). The quantification of these compounds 

by class was estimated by Gaddis et al. (1961), using the same steam 

distillation techniques. They found that the amounts of carbonyls pro­

duced from the natural fats agreed fairly well with the amounts of 

carbonyls produced from the various fatty acids found in the fats. 

Although the procedures described by Gaddis and co-workers were useful, 

they were lengthy and only classes, rather than individual compounds, 

could be estimated. 

In 1959, Haverkamp and deJong, published a method in which 

carbonyls in fat were converted to their DNPH's by passing the fat 

through a reaction column containing Celite impregnated with DNPH in 

2î) hydrochloric acid. The amount of DNPH's in the eluate was estimated 
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by measurement of the optical density at the absorption maximum. Horlkx 

(1964) severely criticized this method, however, proving that hydroper­

oxides in a fat rapidly decomposed into carbonyl compounds while in the 

reaction column. He did this by subjecting methyl oleate oxidized to 

various extents to the procedure. The DNPH's were produced in amounts 

equivalent to the peroxide values. But if the peroxides were first 

reduced, the DNPH's were diminished markedly. This indicated that 

scission of the hydroperoxide to carbonyls resulted from contact with 

the reaction column. 

One of the most widely used methods for carbonyl determinations was 

developed by Schwartz and co-workers (Schwartz and Parks, 1961; Schwartz 

et al., 1962). The use of ion-exchange resins in the microanalysis of 

DNPH's was employed. The method was further developed to give a direct 

quantitative isolation of monocarbonyl compounds from fats and oils 

(Schwartz et al., 1963). In this procedure, carbonyl compounds in the 

fat were converted to their DNPH's by passing them through a reaction 

column of Celite impregnated with DNPH in IM phosphoric acid. They were 

subsequently freed of fat, and fractionated by adsorption on activated 

magnesia and partially deactivated alumina. Then, class separation of 

the fat-free monocarbonyl fraction was accomplished on magnesia. The 

individual homologs of each class were obtained by column partition 

chromatography and identified by various techniques such as paper 

chromatography, cochromatography on partition columns, ultraviolet 

spectra, and melting points. This method avoided distillation and 

extraction techniques, allowing both volatile and non-volatile carbonyls 
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to be measured. The method was particularly suited to small samples of 

fat, although it could be modified for kilogram quantities. The optimum 

concentration of fat to be used was 20% in a volume of 50 ml of hexane. 

Micromolar amounts (about 100 yg or 10 ppm) of carbonyls from the fat 

could be quantitatively determined. 

Schwartz and co-workers checked their procedure for possible hydro­

peroxide scission in the reaction column using methyl llnoleate hydroper­

oxide. Analysis of the carbonyls obtained from the hydroperoxide after 

passage over the reaction column, resulted in approximately 7% carbonyl 

production. However, by adsorbing the hydroperoxide from a benzene-

hexane solution onto a column of Dowex 1-X4, removing the effluent, and 

analyzing this for carbonyls, the same data for carbonyls resulted. 

Therefore, they concluded that the original hydroperoxide was contaminated 

with about 7% of monocarbonyls and that no monocarbonyls were produced 

from methyl llnoleate hydroperoxide on contact with the reaction column. 

In 1980, Pradel and Adda suggested that destruction of peroxides 

did, indeed, occur in the derlvatizatlon column of Schwartz's method. 

In the study of the monocarbonyl fraction of cheese, they compared the 

amounts of carbonyls produced by two different methods. They found that 

the amounts of aldehydes recovered when using the direct derlvatizatlon 

method of Schwartz were significantly higher than when a high vacuum 

method was used. Also, PV determinations of the fat before and after 

passage through the reaction column showed that an Important destruction 

of the peroxides had occurred. 
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In addition to the scission problem, there were several disadvan­

tages to this method. Several days were needed to complete the series 

of columns needed to analyze one sample. Secondly, due to the presence 

of water in the reaction column, vinyl ketones could not be measured. 

These compounds are particularly important in off-flavor development in 

milk fat (Hammond and Hill, 1964). 

In 1964, Linow et al. used potassium iodide to reduce hydroperoxides 

in an oil before carbonyl determination. The carbonyl compounds were 

extracted from the reduced substrate with benzene, reacted with DNPH, and 

classes determined spectrophotometrically. Good reproducibility and 

satisfactory sensitivity was reported. In 1966, the same workers deter­

mined carbonyls by DNPH formation in the presence of hydroperoxides 

using an acetic acid medium. Spectrophotometry resulted in quantitative 

determinations of the saturated aldehydes, enals, and dienals, and in 

partial measurement of the non-aldehydic carbonyls. No interference 

from the hydroperoxides was reported. 

Quantitative determinations of the 2-ketones in natural fats as 

DNPH's were reported by Franzke et al. (1968). Paper chromatographic 

separation and quantitative determinations by spectrophotometry resulted 

in sufficient accuracy. Franzke and Baumgardt (1973) developed a rapid 

method for the determination of carbonyl compounds in fats using heptanal 

as a criterion for the total carbonyl content. Direct reaction of the 

fat with DNPH, separation by a cation exchange column, and spectrophoto-

metric measurement were employed. 
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Thin layer chromatography (TLC) has been a widely used technique for 

classifying and separating classes, or a homologous series of DNPH's. 

Schwartz et al. (1968) reported the use of several TLC steps for a com­

plete quantitative analysis of carbonyl compounds. Craske and Edwards 

(1970) improved this method by using a two-dimensional technique in which 

two separations could be effected on one plate. They reported that a 

complete separation could be achieved during one working day. Even so, 

this was not a quick analysis. 

To Improve speed and accuracy in the quantification of DNPH-

derivatives of carbonyl compounds, direct GC was introduced. Soukup et 

al. (1964) reported direct analysis of the DNPH's using a packed column. 

Poor separation of closely related carbonyl compounds resulted. Detect-

«6 ""S 
ability of these derivatives was estimated at 10 to 10 g, but further 

sensitivity was limited because of column background. The simplicity of 

the method, however, was attractive. Although mixtures of DNPH's could 

be separated directly as previously discussed by paper chromatography, 

adsorption chromatography, or TLC, GC offered the best potential for the 

separation of a complete mixture of DNPH-derivatives in a practical 

analysis time (Papa and Turner, 1972). The initial problems with GC 

analysis of DNPH's included poor reproducibilities, variance in response 

factors with concentration, appearance of decomposition peaks, and widely 

varying responses per mole of a homologous series of DNPH's. By using 

on-column injection, shortening column length to 45 cm, lowering the 

detector oven temperature to 200"̂ C, and adding a nitrogen sweep gas at 

the column exit. Papa and Turner were able to improve the response 
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characteristics and reproducibilities of the method. Thermal decomposi 

tion, column deterioration, and inadequate quantitative results, however 

still existed. Pias and Gasco (1975) reported negligible decomposition 

phenomena by improving chromatographic conditions. 

The determination of carbonyl compounds as their phenylhydrazones 

was accomplished by Korolczuk et al. (1974). They cited ease in prépara 

tion of the derivatives as well as their increased stability as advan­

tages over DNPH's. However, double peaks, possibly syn and anti isomers 

for some phenylhydrazones were observed. 

The use of GC analysis with packed columns was soon found to have 

limited use. Most of the derivative peaks overlapped seriously, giving 

poor resolution of compounds (Linko et al., 1978). A glass capillary 

column was successfully used by Linko and co-workers to analyze DNPH-

derivatives of the volatile carbonyl compounds in carrots. However, 

many of the DNPH's gave double peaks. It was suggested that Pias and 

Gasco (1975) could not distinguish the double peaks because of low 

efficiency of their packed GC columns (Linko et al., 1978). 

Uralets et al. (1980) studied the use of high-performance liquid 

chromatography (HPLC) in the analysis of DNPH's. HPLC separations were 

slightly better than those obtained by packed columns, but glass capil­

lary columns were reported as the method of choice. A study of double 

peak formation of the DNPH-compounds yielded no improvements in limiting 

their formation. 

In an alternative procedure, Johnson and Hammond (1971) used 2,4,6-

trichlorophenylhydrazine (TCPH) as a reagent for carbonyl compounds. 
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Several TLC separations by class were necessary before individual com­

pounds could be injected into a GC equipped with a packed column, for 

quantitative determination at the nanogram level. This method was 

sensitive, but too time-consuming for a routine assay (Gray, 1978). 

Tripp et al. (1969) also used TCPH to identify carbonyl compounds. 

They reported that double peaks were obtained on GC of the TCPH's. 

Johnson and Hammond also reported double peak formation, but when all 

metal was removed from the GC column and replaced by glass, the double 

peaks disappeared. This suggested that possible rearrangement products, 

rather than syn-anti-isomerization, were responsible for the double peaks. 

More recently, use of a 10-m capillary column coated with SE-30 was 

used in conjunction with TCPH-derivative formation from carbonyls 

(Hammond et a1., in press). Rapid results, elimination of double peaks, 

and sensitivity to the nanogram amount was reported. In order for this 

method to be used in fat analyses, a way to separate the TCPH's from the 

remainder of the fat had to be developed. 

In the phenylhydrazone methods previously mentioned, individual 

compounds could be quantified and thus, specifically related to flavor 

characteristics in oxidizing oils. Several classes of compounds have 

been implicated in off-flavor development of deteriorating oils. Flavor 

descriptions and thresholds were studied for many of these (Evans et al., 

1974; Badings, 1960; Keppler, 1977; Selke et al., 1975). Duin (1960) 

identified the following classes of carbonyls as contributing to off-

flavor in butter; saturated aldehydes (Ĉ  - Ĉ g), 2-enals (Ĉ  ~̂ ll̂  ' 

2,4-dienals (Ĉ  - Ĉ ^̂ ), enals with the double bond not in the 2-position 



www.manaraa.com

13 

(Cg - Ĉ g), and dienals with a double bond in non-conjugated position to 

the 2-enal configuration (Cg - Ĉ g). Ketones (Ĉ  - Ĉ ) were considered 

to be unimportant in their contribution to oxidation off-flavors 

(Badings, 1960). 

Threshold values for the series of n-aldehydes (Ĉ  - were 

listed by Selke et al. (1975). Values ranged from 0.02 ppm for butanal 

and 0.04 ppm for heptanal, to 0.46 ppm for octanal and 6.60 ppm for 

propanal. Thresholds of selected 2-ketones (Ĉ  - Ĉ )̂ ranged from 0.40 

ppm for hexanone to 79.50 ppm for butanone. By mixing 2-ketones at 

subthreshold levels, a synergistic effect was reported, and thresholds of 

individual compounds reduced. Keppler (1977) reported threshold values 

for a number of aldehydes. Values included 0.04 ppm for 2-trans-4-

trans-hexadienal, 0.50 ppm for 2-trans-4-trans-heptadienal, and 0.35 ppm 

for 2-trans-pentenal. The interaction between the aldehydes also played 

a part which decreased or Increased the flavor strength (Keppler, 1977). 

Oct-l-en-3-one (vinyl amyl ketone), pent-l-en-3-one (vinyl ethyl 

ketone), and 2-trans-6-cis-nonadienal were isolated from autoxidized milk 

fat and shown to contribute to undesirable flavor components (Hammond 

and Hill, 1964; Evans et al., 1974). Threshold values found for each 

were very low, with oct-l-en-3-one being detected at approximately 10 

ppb (Hammond and Hill, 1964; Hill and Hammond, 1965). Compounds found 

to contribute to oxidized flavor in soybean oil included 1-decyne and 

pentyl furan, with threshold values reported at 0.1 ppm and 1 ppm, 

respectively (Evans et al., 1974). Other hydrocarbons and alcohols were 

tested for flavor responses and the threshold of oct-l-en-3-ol measured 

at 0.1 ppm. 
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Hill and Hammond (1965) reported the contribution of hexanal, 

oct-l-en-3-one, 2-trans-6-cis-nonadienal, and pentanal to the autoxidized 

flavor in soybean oil. Diacetyl and 2,3-pentanedione were reported to 

contribute to the buttery flavor found in the early stages of oxidation 

of soybean oil, while A-cis-heptenal and 2-trans-4-pentadienal were 

flavor contributors in autoxidized linseed oil (Seals and Hammond, 1965; 

Seals and Hammond, 1969). 

By using a method to quantify individual compounds from autoxidized 

oils and relating this to threshold values and flavor interactions, a 

profile of the oxidized flavors in individual oils should be possible. 
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EXPERIMENTAL INVESTIGATION 

Materials and Methods 

Florisil 

Florisll (60-100 mesh), manufactured by the Floridin Company, was 

purchased from Fisher Scientific Company. For use in purifying cyclo-

hexane, Florisil was activated in a 300°C oven overnight. For use in 

column chromatography, Florisil was activated in a 250°C oven overnight, 

and 10% of its weight of water was added and allowed to equilibrate for 

24 h. 

Cyclohexane 

Cyclohexane was purified by a series of steps. It was distilled 

rapidly through a 40-cm Vigreaux column, reacted overnight with LiAlĤ , 

passed through a column of activated Florisil (about 30 ml/g) to remove 

carbonyl impurities, and distilled slowly through a 100-cm column of 

porcelain saddles to remove high boiling impurities. 

Ether 

Ether was reacted overnight with LiAlĤ , and distilled fresh each 

day. 

2,4,6-trichlorophenylhydrazine (TCPH) 

The TCPH was purified by recrystallization from water. Approximately 

10 g crude TCPH was added to 500 ml boiling distilled water. After 

boiling 5 min, the crystals were removed with a Buchner funnel, 

added to 3 1 boiling water and boiled 2 min. The hot mixture was 
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filtered through glass wool, covered, and allowed to sit in the dark. 

When cool, the pure crystals were filtered through a Buchner funnel, 

washed 3 times with distilled water, and dried thoroughly aftet each 

wash. 

After the data for this thesis were collected, cleaner TCPH crystals 

were obtained by recrystallization from ethanol. To purify the crystals 

in this manner, 5 g crude TCPH was mixed with 50 ml distilled ethanol. 

Charcoal was added to remove the yellow color, and the charcoal was 

removed by hot filtration through a Hirsh filter. The filtrate was 

boiled until reduced to a volume of 20 ml, cooled to room temperature, 

and the clean TCPH crystals removed by filtration. 

Alumina 

Alumina (80-200 mesh) was purchased from Fisher Scientific Company 

and used directly. 

Cellte 

Celite 545 was purchased from Fisher Scientific Company and used 

directly. 

Soybean oil 

Crude soybean oil was obtained from Anderson Clayton and Company. 

It was deodorized using an apparatus similar to that described by Schawab 

and Button (1948). In Test I, the oil was deodorized for 3.0 h at 240®C. 

In Test II, the oil was deodorized for 1.3 h at 235°C. 
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Standards 

The 2-ketones and 2-enals used as standards, were obtained from a 

commercial source and used directly. Oct-l-en-3-one (vinyl amyl ketone) 

was prepared according to Hammond and Seals (1972). Pent-l-en-3-one 

(vinyl ethyl ketone) and decanal were synthesized from the corresponding 

alcohols by the method of Brown and Garg (1961). Octanal was purchased 

commercially and distilled before use. 

Gas chromatography (GC) 

The 2,4,6-trichlorophenylhydrazones (TCPH's) were analyzed on a 

Varian Aerograph Series 1520 gas chromâtograph equipped with a hydrogen 

flame detector. Glass capillary columns (10-m) coated with SE-30 were 

purchased (Supelco, Belefonte, PA). The column temperature was pro­

grammed from 40° to ZSÔ C at iCC/min. 

Gas chromatograph - mass spectrometer (GC-MS) 

The use of a Finnigan Model 400 GC-̂ MS aided in the identification 

of some compounds. The ionizing voltage was 70 electron volts. 

Linoleic acid hydroperoxide 

Linoleic acid hydroperoxide was produced using the lipoxygenase 

procedure of Gardner (1975). Tween 20 was omitted to avoid excessive 

foaming. The chloroform extract containing the linoleic acid hydroper­

oxide was evaporated to a volume of 40 ml. TLC on Silica gel H was 

used for purification of the compound. The silica gel had been cleaned 

before plate preparation by slurrying 100 g of silica gel with 200 ml 

distilled water. The silica gel was filtered through a Buchner funnel 
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and air was pulled through it until fairly dry. The silica was then 

washed two times with 200 ml methanol, allowing the suction to dry it 

thoroughly between washings. Finally, three 200-ml washings of dis­

tilled ether were applied, and the silica gel allowed to dry until no 

smell of ether was detectable. A 480-nl aliquot of the linoleic acid 

hydroperoxide mixture was then streaked on a 0.25-mm silica gel plate. 

After development, the linoleic acid hydroperoxide was identified by 

using a spray containing ammonium thiocyanate and ferrous sulfate, as 

described by Gunstone et al. (1975). 

Test Procedures 

TCPH-Celite procedure 

A sample diluted with 2 ml cyclohexane was passed through a 5.5-mm 

i.d. X 15-cm column containing 0.8 g Celite impregnated with 0.8 ml of 

5% TCPH in IM Ĥ PÔ . The column was washed with 8 ml of cyclohexane, 

and the eluate evaporated under nitrogen in a 30°C water bath. If the 

original sample was lipid-free, it was evaporated to 200 yl and a l-yl 

aliquot injected onto the GC. 

TCPH-alumina procedure 

A fat sample was passed through the Celite-TCPH column previously 

describedé The cyclohexane eluate was evaporated under nitrogen in a 

30°C water bath and then passed through an 11-mm i.d. x 33-cm column 

containing 10 g alumina. The column was washed with cyclohexane:ether 

(98.5:1.5), and 25 ml collected. The eluate was evaporated as before, 

to a volume of 50 pi and a 1-pl aliquot Injected onto the GC. 
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TPCH~Florlsil procedure - (two-column) 

The following method was developed for the quantification of carbonyl 

compounds from fat. 

Step 1 The purpose of this step was to remove interfering hydro­

carbons from the fat sample. The presence of hydrocarbons in soybean and 

other oils has been well documented (Bastic et al., 1978; Weete and 

Manley, 1979). Approximately 0.3 g fat was applied to an ll-mm i.d. x 

33-cm column fitted with a stop-cock and filled with 10 g Florisil in 

cyclohexane. Hydrocarbons were eluted with 80 ml cyclohexane:ether 

(99:1). Pure ether was then applied to the column. The first 10 ml of 

eluate was discarded and the next 18 ml collected. The remaining lipid 

constituents, including the carbonyls, were present in this fraction. 

Step 2 The purpose of this step was to form TCPH-derivatives 

from the carbonyls. The ether eluate from step 1 was placed in a 50 ml 

round bottom flask with 0.1 g TCPH crystals and 3 g Florisil. Florisil 

catalyzed the reaction, allowing immediate dérivâtization of the 

carbonyls with no added acid. The ether was evaporated in a rotary 

evaporator at a temperature below 25°C to avoid thermal breakdown of 

hydroperoxides. 

Step 3 Separation of the TCPH's formed in step 2 from the lipid 

was the purpose of this step. The dry Florisil-TCPH-lipid mixture from 

step 2 was slurried with cyclohexane and packed on top of a column con­

taining 7 g Florisil. The column dimensions were the same as in step 1. 

The column was washed with 20 ml cyclohexane:ether (99:1) which was 

discarded, and the TCPH's were collected in the next 56 ml. 
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Step 4 The solvent containing the derivatives was concentrated 

to about 3 ml by a rotary evaporation and transferred to a centrifuge 

tube where it was evaporated to 50 yl under nitrogen in a 30°C-water 

bath. A 1-yl aliquot was injected onto the GC. The capillary column 

described above allowed nearly all the important carbonyl derivatives to 

be separated according to chain length and unsaturation class. For 

identification and quantification, the peak heights and retention times 

were compared with those of known compounds. A series of 2-ketone-

TCPH's served as a reference standard. Because the TCPH's are unstable, 

the 2-ketone-TCPH's were made fresh at least weekly by following steps 

1-4. Instability of other carbonyls prevented their use as reliable 

standards; however, several aldehydes and vinyl ketones were also tested 

for retention time and their results recorded in relation to the 2-

ketones. GC-MS aided in peak identification. 

Peroxide value (PV) 

Peroxide values of oil samples were determined by the method of 

Hamm et al. (1965) with solvent purification being modified by Lau 

(1981). In some cases, the AOCS Official Method for PV was used 

(AOCS, 1960). 

Sensory tests 

All sensory tests on oil were conducted by the method of Stone 

(1981). Briefly, a trained sensory panel of nine members judged oil 

samples in an emulsion form on a scale of 1 to 10, with 10 being the 

best score. 
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Reduction procedures 

To reduce hydroperoxides In the samples tested, two reducing 

columns were developed. The first was based on the use of SnClg as a 

reagent, as described by Egerton et al. (1954). The sample to be reduced 

was passed through an 11-mm l.d. x 26-cm column containing 4 g Celite 

impregnated with 1 g SnClg in 2 ml O.IN NaOH. The second method was 

devised using the reagents from the AOCS Official Method for PV (AOCS, 

1960). Column dimensions were the same as for the first procedure, 

however, a two-tiered packing was employed. Approximately 4 g Celite 

impregnated with 1 ml saturated KX and 1 ml 85% Ĥ PÔ  was packed over 

2 g Celite impregnated with 1 ml IN NagSgÔ . The thlosulfate reduced 

the iodine produced in the reduction of hydroperoxides. Removal of 

residual HI in the sample after reduction was necessary if accurate PV 

determinations were to be made. In this case, the sample was collected 

in a tube containing 2 ml of a 10% solution of NagCOg. The addition of 

NagSÔ  and centrifugation removed the added water from the sample. 

With both reduction procedures, suction was used to pull the oil through 

the column. Approximately 10-12 g of oil could be reduced by each 

column. 

Total volatiles (TV) 

The method of Jackson and Giacherio (1977), as modified by Stone 

(1981), was used to measure TV from an oil sample. 
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RESULTS AND DISCUSSION 

Method Development 

The 2,4,6-trlchlorophenylhydrazlne (TCPH) method for analysis of 

carbonyls in fat was based on a procedure used by Hammond et al. (in 

press). They used a Celite column impregnated with TCPH in phosphoric 

acid as a reaction column to convert carbonyls into TCPH's. These were 

separated and quantified by GC on a capillary column. A method for 

separating the TCPH's from fat was necessary if their method was to be 

adapted to analysis of carbonyls in fats. A number of procedures were 

investigated to achieve this. 

Preliminary tests by TLC to determine the best media to separate 

TCPH's and fat showed that alumina was better than silica gel or 

magnesia. Therefore, an alumina column method was developed to isolate 

the TCPH's from the fat impurities on a suitable scale. 

In developing the alumina column procedure, recovery of the TCPH's 

and the adsorption of the fat on alumina needed to be determined. A 

series of 2-ketones was used as standards. At concentrations of 1.5% 

ether or more in cyclohexane, 100% of the TCPH's could be recovered from 

the alumina column within a volume of solvent equal to twice the mobile 

phase volume of the column. 

The adsorption of fat by the alumina was tested by applying several 

amounts of fat to 10 g-columns of alumina. With cyclohexane:ether 

(98.5:1.5) as the solvent, about 0.3 g fat could be held by the alumina, 

while two column volumes of solvent were collected. Mixtures of the 

carbonyl standards and 0.3 g fat were passed through the Celite-TCPH 
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reaction column, applied to the alumina column, and were completely 

resolved with 100% recovery of the standard-TCPH's. 

To test quantitative conversion of the carbonyls to TCPH's by the 

Celite-TCPH column, different amounts of each standard were used. The 

GC response to the TCPH's that were produced was nearly linear down to 

1 yg of carbonyl. 

Application of the alumina method to measuring carbonyls from an 

oxidized soybean oil gave reproducible results, but the amounts and 

number of TCPH's present were surprisingly low. Many carbonyls produced 

during oxidation are slightly more polar than the 2-ketones used to 

develop this method, so incomplete recovery of other carbonyl classes 

was a possibility. This was verified by a test with 2-trans-butenal 

(crotonaldehyde) which gave a recovery of zero. Adjustments in the 

percentage of ether in the eluting solvent and in the moisture content 

of the alumina failed to give good recoveries of the 2-trans-butenal 

while maintaining adequate resolution of its TCPH from fat. 

A search for a better adsorbant led to Florisil (magnesium silicate). 

According to Litchfield (1972), Florisil is a good adsorbant for tri­

glycerides, will not hydrolyze esters, and has less affinity than alumina 

for double bonds. Florisil was tested as a separation medium for the 
* • 

TCPH's by the same procedures used for alumina, except that 

2-propenal (acrolein) and 2-trans-butenal were included in the carbonyl 

standards. These tests revealed that the amount of moisture in the 

Florisil was vital. Recovery of more than 100% of the carbonyl standards 

with no apparent fat interference was achieved by using a 10% moisture 

content of Florisil and a cyclohexane;ether mix of 99:1. 
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The remarkable recovery of the standards suggested a possible 

catalytic effect of the Florisll In the formation of the TCPH's. Indeed, 

a mixture of TCPH reagent and carbonyl standards in cyclohexane applied 

to a Florisll column and eluted with cyclohexane:ether (99:1) gave 

recoveries greater than those obtained by passing a similar mixture 

through a Celite-TCPH reaction column. This discovery made possible 

the elimination of the Celite-TCPH reaction column, and thus, refined 

the procedure to a one-column method. Also, it removed acid and water 

from the derivatization step. Acid had been shown previously to cause 

scission of hydroperoxides in fat in a 2,4-dinitrophenylhydrazlne (DNPH) 

reaction column (Pradel and Adda, 1980). In addition, the presence of 

water was known to interfere with the formation of vinyl ketone-dinltro-

phenylhydrazones, compounds Important in the oxidized flavor of milk 

fats (Hammond and Hill, 1964). 

To determine the accuracy of the one-column TCPH procedure, GC 

responses for different amounts of each standard were measured. Listed In 

Table 1 are average peak heights of triplicate runs for three different 

amounts of each standard. The microgram amounts are only approximate. 

At the beginning of the study, each standard was diluted to a concentra­

tion of approximately 1 ̂ ig/ul and the same solutions used throughout 

the study. Reproducibility of the GC response for each standard was 

approximately ±20%. Variations in peak height appeared to be related 

more to individual GC runs than to differences in the TCPH column pro­

cedures. For example, several 1-wl allquots of the same sample, measured 

in consecutive GC runs, gave somewhat different responses. Moreover, 
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Table 1. Amounts of carbonyl standards retrieved by 
the one-column TCPH-Florisil procedure when 
varying the quantity added* 

5 Pĝ  10 uĝ  15 pĝ  

acetone 138 170 308 

2-propenal 28 56 -

butanone 30.5 94 91 

pentanone 37 89 110 

2-trans-butenal 13 37 43 

heptanone 37.5 82 106 

octanone 22 45 66 

nonanone 21 34 63 

Âverage peak heights of triplicate runs on an 
attentuation of 128 and electrometer setting of 10rl2. 
Full scale pen deflection is 100 units. Values 
greater than 100 were measured at 256 attenuation. 

Approximate yg of standard used. 
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day to day variations in the GC response resulted in even greater dif­

ferences. Part of these differences may be related to injection tech­

nique. In spite of these variations. Table 1 shows a linear GC response 

with the amount of carbonyl introduced into the procedure. Because of 

the variations caused by injection technique and GC conditions, the use 

of an internal standard in all sample runs was introduced. Pentanohe, 

a stable carbonyl found to interfere minimally with future analyses, 

was chosen. 

Unfortunately, attempts to measure carbonyls in oxidized soybean 

oil using the one-column TCPH procedure revealed many peaks which did 

not vary in size with the degree of oxidation of the fat. When the 

procedure was run on fat with no TCPH crystals added, many of the same 

peaks appeared. These were later identified by GC-MS as long-chain 

hydrocarbons, known constituents of the oil (Bastic et al., 1978; 

Weete and Manley, 1979). 

Attempts to fractionate the hydrocarbons and TCPH's based on dif­

ferences in their polarity, failed. Changing the ether percentage of 

the solvent was ineffective. Placing the TCPH part of the way down the 

Florisil column, so that the hydrocarbons would move partly down the 

column before the carbonyls formed their TCPH-derivatives, resulted in 

recovery of the hydrocarbons but no carbonyl-TCPH's. But this showed 

that removal of the hydrocarbons from the carbonyls in the fat sample 

was possible with the Florisil column. The removal of the hydrocarbons 

was finally achieved as follows: The fat sample was applied to the 

Florisil column and the hydrocarbons eluted with cyclohexane:ether 
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(99:1). The remaining lipid material, including the carbonyls, was 

eluted with 100% ether. The hydrocarbon-free lipid fraction was then 

reacted with TCPH in a flask in the presence of Florisil, and the ether 

removed in a rotary evaporator. The reaction mixture was fractionated 

on a second Florisil column to separate the TCPH's from the remaining 

lipids. 

Once again, recovery of a series of 2-ketone standards plus 

2-propenal and 2-trans-butenal was checked by this new method. The 

recovery of TCPH's was comparable to that of the one-column Florisil 

method previously described. The lower molecular weight carbonyls 

(Ĉ  - Ĉ ) gave slightly lower results when measured by the two-column 

Florisil method, but since these compounds are not important in the 

flavor of oxidized fats because of their high flavor thresholds, this 

was not a great concern (Selke et al., 1975). A typical chromatogram of 

the standards run by the two-column Florisil procedure is shown in 

Figure 1. 

Oxidized fat samples were tested by the two-column Florisil pro­

cedure, and gave peaks that increased in size with the extent of oxida­

tion. When fat alone, without TCPH, was run through the two-column 

procedure, little contamination was apparent. However, one peak at 

approximately 184°C appeared in the fat blank. This was identified by 

GC-MS as a long-chain fatty acid or hydrocarbon having a MW of 358 to 

360. 
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Figure 1. Chromatogram of a typical standard obtained by the TCPH-
Florlsll procedure. GC capillary column is 10-m SE-30, 
attenuator 16, electrometer setting 10"̂  ̂
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Clean-up Procedures for the Blank 

Considerable effort was given to the development of a solvent blank 

producing minimal interfering peaks, as outlined in the I4aterials and 

Methods section. Although more improvement in this area is desirable, a 

blank that was adequate for quantitative determinations in this study 

was developed. 

An injection of solvent which was evaporated in a way typical of a 

sample, but without any TCPH, gave very little GC response. But when 

TCPH was added, a chromatogram of a typical blank appears as in Figure 2. 

Much of this blank seems to be impurities in the TCPH. Since the data 

for this study were gathered, a cleaner blank was achieved through better 

purification of the TCPH by crystallization from ethanol, as described 

in the Methods section. The two larger peaks appearing at about 210° 

and 212°C were eliminated and several other peaks were reduced in size. 

Characterization of these peaks by GC-MS suggested one was di(trichloro-

-6 
phenyl)amine. Peak a is the internal standard, pentanone (1.21 x 10 g). 

The large peak appearing at approximately 190°C was identified by 

GC-MS as cyclohexenone-TCPH. It was discovered that the amount of the 

compound present was directly affected by light. If, during solvent 

purification, the Florisil column was wrapped in aluminum foil, the 

size of the peak after sample preparation was dramatically reduced. 

Total elimination of the peak, however, was not possible, and the size 

of this peak present in Figure 2 was typical of the best circumstances. 

To make the gas chromatograms appearing later in this dissertation 

more easily interpreted, peaks found in the fat and solvent-TCPH blanks 



www.manaraa.com

Figure 2. Chromatogram of a typical solvent blank obtained by the TCPH-
Florisil procedure, GC capillary column is 10-m SE-30, 
attenuator 16, electrometer setting 10~̂ 2 
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were subtracted from the chromatograms of all sample results. The blank 

impurities were fairly consistent from run to run, so that the elimina­

tion of these peaks from the sample results could be done reliably. 

Sensitivity of the Method 

Through the use of standards, it was estimated that this method was 

sensitive to a level of about 0.1 ppm (1 x 10 ̂  g) of carbonyl in the 

fat. Below this level, impurities from the blank tended to overwhelm 

the compounds being measured. As discussed in the Review of Literature, 

some potent flavor compounds have thresholds as low as 1 ppb. To reach 

this level, this method would need to be increased in sensitivity by 

100-fold. The potential for this increase is present. Currently, only 

1/50 of the final volume of sample is injected into the GC and the GC 

output is attenuated 16-fold. With improved clean-up procedures of the 

TCPH and solvents, sensitivity could be increased to a level of 1 ppb 

or higher. 

Even with the current limits in sensitivity of the TCPH method, 

the quantification of carbonyl compounds in a freshly deodorized oil 

was possible. Increasing amounts of these carbonyls could then be 

measured as autoxidation of the oil proceeded. 

Storage Test I - 55°C 

To demonstrate the usefulness of this method̂  refined, deodorized 

soybean oil was analyzed at various stages of oxidation during storage 

at 55°C. Chromatograms of the oil, representing the average of duplicate 

runs for each stage, are shown in Figure 3. Peaks also present in the 



www.manaraa.com

Figure 3. Chromatograms of carbonyl-TCPH's in soybean oil stored at 
55°C. GC capillary column is 10-m SE-30, attenuator 16, 
electrometer setting 10"̂  ̂
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blank have been subtracted from the chromatograms. Peak 6 is the internal 

—6 
standard, pentanone, representing 4 ppm (1,21 x 10 g in 0.3 g fat). 

The increase in peak number and size can be noted as oxidation proceeded. 

Amounts of each compound at progressive stages of oxidation and a list 

of its probable identification are presented in Table 2. Peaks were 

identified by comparing their retention times in relation to standards. 

Previously, a chart mapping the retention times of the TCPH's of 

selected 2-ketones (Ĉ  - and Cy - Cg), vinyl ketones (Ĉ  and Cg), 

aldehydes (Ĉ  - C^̂ ), 2-enals (C  ̂ - Cg), and 2,4-dienals (C  ̂ - C^Q) had 

been prepared by a former technician using the original TCPH-Celite 

procedure of Hammond. In addition, a series of 2-ketones (Ĉ  - and 

Cy - Cg), 2-propenal and 2-trans-butenal was run regularly by the 

current two-column Florisil procedure. A standard could remain stable 

in the freezer for about 7 to 10 days. A comparison of the retention 

times of the peaks from an oxidized oil sample with those of the stand­

ards gave good estimates of the probable compound represented by each 

peak. The amounts of each carbonyl were estimated by comparing their 

peak heights to that of the internal standard pentanone. 

In some cases, the retention times of two carbonyls were very close 

making the identity of an unknown uncertain. Positive identification 

of the unknown was possible by simultaneously injecting an aliquot of 

the probable standard over an aliquot of the sample containing the 

unknown. Growth of the unknown peak indicated positive identification. 

Pent-l-en-3-one, octanal, and decanal standards were used in this 

manner. 
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Table 2. Amounts (yg/0.3 g oil) and identifications of carbonyls pro­
duced from soybean oil stored at 55°C* 

Peak it Identification Day 0 Day 3 Day 5 Day 9 Day 12 

1 formaldehyde 0.00 0.44 0.59 0.35 0.86 
2 acetaldehyde 0.00 0.07 0.27 0.04 0.33 
3 propanal or acetone 0.00 0.00 0.43 0.90 1.69 
4 2-propenal 0.31 0.24 0.25 0.33 0.52 
5 butanal 0.09 0.40 0.26 0.37 0.39 
6b pentanone 1.21 1.21 1.21 1.21 1.21 
7̂  hexanal 0.26 0.49 0.80 1.97 4.60 
gc 2-trans-(or 3-cis-)hexenal 0.12 0.08 0.12 0.52 1.45 
9 2-trans-4-trans-hexadienal 0.00 0.06 0.20 0.28 0.17 
10 2-trans-heptenal 0.13 0.12 0.20 0.48 0.90 
11 2-trans-4-trans-heptadienal 0.21 0.08 0.13 0.18 0.28 
12 2-trans-octenal 0.00 0.00 0.11 0.31 0.28 
13 nonanal 0.00 0.00 0.42 0.48 0.61 
14 unknown 0.00 0.00 0.00 0.13 0.24 
15 2-trans-4-trans-octadienal 0.08 0.00 0.12 0.26 0.24 
16 decanal 0.10 0.00 0.06 0.21 0.18 
17 2-trans-nonenal 0.00 0.00 0.09 0.19 0.26 
18 unknown 0.02 0.01 0.39 0.22 0.27 
19 2-trans-4-trans-nonadienal 0.10 0.10 0.10 0.17 0.17 

Âmounts listed as yg of TCPH-derivative found in 0.3 g oil. 

b 
Internal standard. 

'̂ It has not been established whether 3-cis-hexenal would rearrange 
to 2-1rans-hexena1 in this procedure. If not, 3-cis-hexenal TCPH 
probably would migrate with the TCPH of hexanal. 



www.manaraa.com

38 

Incomplete resolution of octanal and 2-trans-heptenal, as well as 

pent-l-en-3-one and pentanone was observed. Possibly, overlapping peaks 

of many other aldehydes and the 2-enal one carbon shorter, as well as 

related carbonyIs of the same number of carbons could occur. A longer 

GC capillary column could result in better resolution of the carbonyls. 

GC-MS gave additional help in positively identifying formaldehyde, 

acetaldehyde, 2-propenal, propanal or acetone, butanal, hexanal, 

2-trans-(or 3-cis-)hexenal, and 2-trans-heptenal. Mass spectral data 

for these compounds and some 2-ketone-TCPH standards are given in 

Table 3. Carbonyl-TCPH's larger than or gave no response in the 

GC-MS analyses, so they could not be identified. A cyclic pyrazone 

derived from TCPH and malonaldehyde may also come out with acetaldehyde. 

The carbonyl compounds found in the oxidizing soybean oil in Test I 

were those that had been identified by previous workers, as described 

in the Review of Literature. The rapid increase in size of hexanal 

should be noted. The green plant flavor, often associated with oxidizing 

soybean oil, has been attributed to its presence (Hill and Hammond, 

1965). Peak 8, possibly 2-trans- or 3-cis-hexenal, grew steadily as 

oxidation increased. 3-cis-hexenal has been said to be responsible for 

the "green-beany" flavor in autoxidized soybean oil. 

The detection of oct-l-en-3-one and pent-l-en-3-one, although pos­

sible by the TCPH method, was not noted. Formaldehyde, 2-propenal, 

2-trans-heptenal, and nonanal grew moderately as oxidation proceeded. 

Peak 3, propanal, and possibly unresolved acetone increased considerably 

by day 12. Present in small amounts were acetaldehyde, 2-trans-octenal, 
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Table 3. Mass spectral data for carbonyl-TCPH's identified by GC-MŜ  

——— — — — —— 

Identification Characteristic fragments m/e (relative abundance) 

Carbonyls found in fat: 

formaldehyde 72(100), 74(92), 194(76), 196(73), 97(60), 73(52), 75(51), 167(45), 
169(43), 88(38), 222(13), 224(12), 226(3) 

acetaldehydê  & malonaldehyde 194(100), 196(80), 83(75), 97(70), 74(60), 167(55), 169(55), 
109(40). 73(35). 88(33). 236(18). 238(18), 246(18), 248(18), 240(8), 
250(8) 

propanal or acetone 196(100), 194(85), 167(35), 169(34), 74(30), 97(25), 198(24), 
109(20), ̂ (18), 252(18), 254(8) 

2-trans-propenal 97(100), 69(35), 71(34), 81(30), 109(27), 98(25), 194(21), 167(20), 
169(20), 75(20), 77(20), 244(10), 250(9) 

butanal 84(100), 194(34), 196(28), 60(23), 77(20), 123(19), 70(19), 169(16), 
198(15), 167(14), 266(7), 264(6) 

hexanal 194(100), 196(95), 169(60), 167(59), 68(58), 201(55), 97(43), 
195(40), 62(32), 98(31), 197(30), 236(28), 238(27), 292(10), 294(9), 
296(4) 

2-trans-(or 3-cis-)hexenal 69(100), 96(90), 67(28), 79(26), 80(24), 196(20), 194(18), 195(17), 
169(17). 167(15). 290(10), 292(8), 255(7) 

2-trans-heptenal 68(100), 196(25), 110(24), 80(20), 75(19), 194(19), 83(18), 167(18), 
93(16), 169(15). 243(6). 304(4) 

Carbonyl standards: 

butanone 70(100), 194(80), 196(75), 62(66), 195(60), 197(50), 61(49), 97(48), 
71(40), 74(39), 167(35), 169(33). 264(21). 266(20), 268(7) 
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pentanone 196(100), 194(95), 84(75), 167(70), 169(65), 195(55), 201(50), 
62(48), 203(44), 197(43), 236(35), 238(33), 280(12). 278(11) 

heptanone 97(100), 62(85), 195(84), 196(80), 215(66), 194(65), 61(64), 
196(63), 70(61), 68(58), 124(50), 210(48), 167(46), 169(45), 
250(20), 252(18). 306(8), 308(7) 

M̂ass peaks for each TCPH-carbonyl are underlined. 

T̂his peak was a mixture of the two compounds. 
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2-trans-nonenal, decanal, 2-trans-4-trans-heptadlenal, 2-trans-4-trans-

octadienal and 2-trans-4-trans-nonadlenal. 

For comparison, the PV for each treatment, as measured by the Stamm 

test, is also listed in Figure 3. Overall, PV increased as the peak 

sizes increased. 

To relate the appearance of carbonyls in an oxidized oil to its 

flavor deterioration, a trained sensory panel of nine members judged 

the oils through day 9. Emulsions of the oils were scored on a scale 

of 1 to 10, with 10 being the best or most bland. Average results and 

their standard deviations are listed in Table 4. 

Table 4. Sensory panel scores for soybean oil 
stored at 55*C 

Day Average score for nine judges 

8.33 ± 1.21 

8.00 ± 1.73 

4.38 ± 1.69 

5.11 ± 2.00 

Because of the limited number of replications with the TCPH method 

and the variance in scores from the sensory panel, a statistical analysis 

correlating the panel scores to carbonyl production would not be mean­

ingful. A visual comparison of the results shows that small increases 

in carbonyl compounds from an oxidizing oil, as measured by the TCPH 

method, cannot always be detected by a sensory panel (day 0 vs. day 3 

Day 0 

Day 3 

Day 5 

Day 9 
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and day 5 vs. day 9). Undoubtedly this is because of the great variance 

inherent in sensory panels of this type (Stone, 1981). When oils reach 

values of approximately 5, the panel response tends to become nonlinear 

and decreases very slowly as oxidation proceeds. 

Storage Test II - Various Conditions 

A second storage test was conducted in which refined, deodorized 

soybean oil was stored under various conditions of oxidation. Shown in 

Figure 4 are chromatograms of a control oil, plus oil stored under light 

for 7 days, at 55°C for 10 days, and at 30"C for 25 days . Chromatograms 

in each case represent the average of duplicate runs. As before, peaks 

present in the solvent-TCPH and fat blanks have been subtracted. As in 

the first storage test, peak 6 is pentanone, the internal standard, 

-6 
representing 4 ppm (1.21 x 10 g in 0.3 g fat). The amount and 

identification for each carbonyl from the various treatments are listed 

in Table 5. For comparison, the PV for each condition, as measured by 

the Stamm test, is also presented in Figure 4. 

Carbonyl compounds found in the freshly deodorized control oil of 

storage Test II were present in greater quantities than in the control 

from storage Test I. This probably is because in the previous storage 

test, more rigorous deodorization conditions were used which stripped 

the oil of more of its volatiles. But although the oil at zero time in 

storage Test II had a good flavor, it had more carbonyls than the poor 

tasting oil at day 5 in storage Test I. This shows that it will be 

necessary to consider individual carbonyls and their flavor impact in 

predicting flavor quality from carbonyl analyses. 
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Figure 4. Chromatograms of carbonyl-TCPH's in soybean oil stored under 
various conditions. GC capillary column is 10-m SE-30, 
attenuator 16, electrometer setting 10"̂  ̂
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Table 5. Amounts (pg/0.3 g oil) and identifications of carbonyls pro­
duced from soybean oil stored under various conditions® 

Light- 55°C 30°C 
Peak # Identification Control oxidized oxidized oxidized 

1 formaldehyde 0.69 3.73 1.64 2.07 
2 acetaldehyde 0.22 1.75 0.83 1.01 
3 propanal or acetone 0.00 1.67 3.54 2.90 
4 2-propenal 0.24 0.90 0.66 0.66 
5 butanal 0.38 0.41 0.35 0.17 
6̂  pentanone 1.21 1.21 1.21 1.21 
7 unknown 0.17 0.74 0.10 0.16 
8 2-trans-butenal 0.17 0.28 0.44 0.39 
9 pentanal 0.00 0.73 0.05 0.07 
10 2-trans-4-trans-pentadienal 0.00 0.10 0.28 0.22 
11 2-trans-pentenal 1.58 0.28 0.46 0.21 
12C hexanal 0.78 2.80 7.32 4.84 
13̂  2-trans-(or 3-cis)hexenal 1.14 1.44 1.31 2.18 
14 heptanal 0.59 0.59 0.63 1.18 
15 2-trans-4-trans-hexadienal 0.10 0.27 0.28 0.36 
16 2-trans-heptena1 0.81 8.30 1.04 0.92 
17 2-trans-4-trans-heptadienal 0.11 0.28 0.31 0.25 
18 2-trans-octenal 0.73 0.62 1.14 1.24 
19 2-trans-4-trans-octadienal 1.04 0.90 0.75 0.95 
20 decanal 0.52 0.65 0.50 0.69 
21 2-trans-nonenal 0.31 0.24 0.27 0.45 
22 unknown 0.00 0.11 0.09 0.07 
23 unknown 0.21 0.21 0.17 0.66 
24 2"trans-4-trans-nonadienal 0.10 0.61 0.09 0.22 
25 2-trans-4-trans-decadienal 0.24 0.84 0.14 0.29 

Âmounts listed as yg of TCPH-derivative found in 0.3 g oil. 

range to 2-trans-hexenal in this procedure. If not, 3-cls-hexenal 
TCPH probably would migrate with the TCPH of hexanal. 
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Also notice that the amounts of peak 11 decreased as oxidation pro­

ceeded. Seemingly peak 11, probably 2-trans-pentenal. was produced in 

the deodorization but was oxidized faster than it was produced under 

the other oxidation conditions. Michalski and Hammond (1972) showed that 

carbonyls can disappear as a result of oxidation. Peak 5, butanal, 

similarly seemed to decrease under conditions of 30*C oxidation. 

Similar kinds of carbonyls were produced in all oxidation conditions, 

but the amounts of a carbonyl produced differed. These results are con­

sistent with those of Frankel et al. (1981). The PV was not a good 

indicator of peak size and number. For example, the light-oxidized 

sample produced many peaks of considerable size, yet had a PV of only 

17.71. In contrast, the oil oxidized at 55°C had a PV of 39.29, yet had 

generally smaller peaks than the light-oxidized sample, although a few 

larger peaks occurred at 55°C. The oil stored at 30*C also varied from 

the other treatments in the amounts of carbonyls produced. Others have 

noted the poor correlation of PV with flavor, so It is not surprising 

that it correlated poorly with flavor compounds (Jackson, 1981). 

Some carbonyls were produced in large quantities under a specific 

storage condition. 2-trans-heptenal, although produced under all con­

ditions, was particularly large in the light-oxidized sample. Singlet 

oxygen plays a large part in the scission of hydroperoxides subjected 

to light, resulting in the excessive production of some carbonyls 

(Frankel et al., 1981). Frankel noted the unique appearance of 2-trans-

heptenal from thermal decomposition of the hydroperoxides of methyl 

llnoleate after photosensitizatlon. Also produced in somewhat large 
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amounts In the light-oxidized sample were acetaldehyde, pentanal and 

2-trans-4-trans-decadienal. " 

In the sample oxidized at 30°C, a large amount of hexenal, pos­

sibly Z-tranŝ  or 3-cis-, was measured. Hexanal again was produced in 

fairly large quantities, particulary in the sample stored at 55°C. 

Lower molecular weight compounds, such as formaldehyde and either 

propanal or acetone (peak 3), were also present in large quantities in 

the more oxidized samples. The appearance of these compounds in 

autoxidized soybean oil, or their production from the fatty acids 

soybean oil contains, has been well documented (Gaddis et al., 1961; 

Jackson, 1981). 

Reducing Columns 

Column development 

It was recognized that direct reaction of a fat with Florisil and 

TCPH might produce carbonyls from hydroperoxides. To check this point, 

reducing columns previously described were used to reduce tha hydro­

peroxides to their alcohols before analysis by the TCPH method. By 

passing a sample through a column containing either SnClg or HI, most 

of the hydroperoxides were reduced and thus protected from breakdown 

in subsequent steps. 

Several compounds were tested as reagents for the reducing columns. 

FegSÔ  in HgSÔ  was tried, but heat was necessary for the reduction to 

take place. In addition, the ferric ion dissolved in the oil being 

reduced, possibly causing catalysis of hydroperoxide scission in the 

oil and interfering with PV determinations. 
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SnClg was successfully used to reduce the peroxides In oil by 

dissolving the reagent in NaOH. The basic environment catalyzed the 

reaction, and an oil sample passed through the column was nearly 100% 

reduced. 

The components used in the iodometric PV method were used also to 

create a second reduction column. The HI for reduction of the peroxides 

was generated from a mixture of KI and 85% Ĥ PÔ . Considerable amounts 

of HI and possibly Ĥ PÔ  came through with the oil. Neutralization of 

the acid in the reduced oil was attempted by placing a layer of Celite 

impregnated with NagCOg or NĤ OH in water below the KI layer in the 

column, but in each case water from the lower layer came through the 

oil, resulting in a cloudy product. Neutralization of the acid was more 

easily accomplished by simply collecting the oil sample in a 5% solution 

of NagCOg. The addition of NagSÔ  and centrifugation removed the water 

in the solution from the sample. 

Residual Î  from the HI reduction also remained in the reduced oil 
2 

after passage through the reaction column. The dissolved Ig in the fat 

interfered with PV determination on the reduced oil and might react with 

the carbonyls. To avoid this, a layer of Celite Impregnated with 

NagSgOg was placed below the Celite and HI layer. Most of the residual 

Ig was reduced by this layer. 

The actual degree of reduction of a sample was tested by measuring 

the PV before and after passage through a reaction column. Because 

products from the HI column interfered with the color of the Stamm test, 

the PV was measured iodometrically (AOCS, 1960). Provided the residence 
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time of a sample in the HI column was at least 40 min, 100% reduction 

was achieved. If residence time on the SnCl2 reaction column was at 

least 25 min, 100% reduction resulted when measured by the Stamm test. 

The same sample, when measured iodometrically, generally gave low PV 

readings around 5% of the original PV. Seemingly, some of the hydro­

peroxides remaining in the sample after the SnClg reaction column could 

be reduced by the iodide in the AOCS method, but not by the diphenyl-

carbohydrazide in the Stamm test. 

Finally, analyses of an oil sample before and after passage through 

a reducing column illuminated the extent of hydroperoxide breakdown 

during the TCPH reaction. Several tests were conducted to determine 

this effect. 

Soybean oil - TCPH's 

Before reduction, the PV of an oil that had been oxidized at 55°C 

was 31.98 by the Stamm test. A chromatogram of the nonreduced oil and 

a percentage comparison of each reduction are shown in Figure 5. As 

before, an internal standard, pentanone, representing 4 ppm (1.21 x 

10 ̂  g in 0.3 g oil), was included (peak 6). Peaks also present in the 

blank were subtracted. 

Table 6 identifies each carbonyl. In most cases, the SnClg reduced 

the peak size of each carbonyl more than did the HI. Hexanal was the 

only compound that was almost entirely eliminated by both reduction 

procedures. The peak identified as 2-propenal was also almost 

entirely removed by the SnClg reduction. The diminution of carbonyl 
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Figure 5. Chromatogram of carbonyl-TCPH's obtained by the TCPH-Florisil 
procedure before and after reduction of soybean oil hydro­
peroxides. GC capillary column is 10-m SE-30, attenuator 16, 
electrometer setting 10""̂  ̂
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Table 6. Amounts (ug/0.3 g oil) and identifications of carbonyls 
present in soybean oil using combined reduced and non-
reduced TCPH-Florisil procedures® 

Estimated by Estimated by 
Peak# Identification TCPH-SnCl2 methods TCPH-HI methods 

1 formaldehyde 0.00 1.07 
2 acetaldehyde 0.19 0.22 
3 propanal or acetone 2.85 2.73 
4 2-propenal 0.07 0.23 
5 butanal 0.45 0.49 
6b pentanone 1.21 1.21 
7 2-trans-butenal 0.13 0.18 
8 2-trans-pentenal 0.32 0.32 
9 hexanal 0.13 0.65 
10 heptanal 0.55 0.75 
11 2-trans-4-trans-hexadienal 0.06 0.16 
12 2-trans-heptenal 0.47 0.86 
13 2-trans-4-trans-heptadienal 0.11 0.14 
14 2-trans-octenal 0.31 0.32 
15 unknown 0.28 0.41 
16 2-trans-4-trans-octadienal 0.34 0.38 
17 decanal 0.14 0.15 
18 2-trans-nonenal 0.10 0.12 

Âmounts expressed as yg of TCPH-derivative 

Înternal standard. 

found in 0.3 g oil. 
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amounts by the reduction methods indicates that some of the carbonyls 

are artifacts produced in the TCPH procedure. 

Some carbonyls were increased by the reduction procedures, especially 

by the HI method. Evidently the reduction methods proceed by a free 

radical mechanism that can also lead to carbonyl products. If one 

assumes the lowest amount of a carbonyl found in either a nonreduced or 

reduced sample is the correct value, one can use the reduction methods 

to correct the carbonyl analysis. This has been done in Table 6 using 

both the SnClg and HI results. 

Linoleic acid hydroperoxide 

Pure linoleic acid hydroperoxide was prepared and also examined for 

breakdown and consequent carbonyl production during the TCPH procedure. 

An aliquot of pure hydroperoxide, previously determined to give a PV of 

approximately 40 as measured iodometrically (AOCS, 1960), was used in 

each case. A value of 40 was chosen to correspond to the upper limit of 

PV found in the soybean oils that were previously analyzed by the TCPH 

method. A comparison of artifact production in the reduced and non-

reduced linoleic acid hydroperoxide samples after TCPH analysis is 

shown in Figure 6. Duplicates of each treatment were run. Peak 5 is 

! 6 
the internal standard, pentanone, representing 4 ppm (1.21 x 10 g in 

.0.3 g fat). 

Table 7 identifies and estimates the amount of each carbonyl. The 

values are calculated from the lowest amount found in either the non-

reduced or reduced sample, as described above. 
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Figure 6. Chromatograms of carbonyl-TCPH*s obtained by the TCPH-Florisil 
procedure before and after reduction of linoleic acid hydro­
peroxide. GC capillary column is 10-m SE-30, attenuator 16, 
electrometer setting 10"̂  ̂
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Table 7. Amounts (wg/40 mequiv. peroxide) and identifications of 
carbonyls present in linoleic acid hydroperoxides using 
combined reduced and nonreduced TCPH-Florisil procedures* 

Estimated by Estimated by 
Peak # Identification TCPH-SnCl2 methods TCPH-HI methods 

1 formaldehyde 0.00 0.50 
2 acetaldehyde 0.14 0.66 
3 propanal or acetone 5.46 3.09 
4 butanal 0.00 0.00 
5̂  pentanone 1.21 1.21 
6 pentanal 0,26 0.28 
7 2-trans-pentenal 0.74 0.61 
8C hexanal 0.36 1.97 
9̂  2-trans-(or 3-cis-)hexenal 0.19 0.00 
10 unknown 0.00 0.00 
11 2-trans-heptenal 0.00 0.00 
12 2-trans-4~trans~heptadienal 0.00 0.00 
13 unknown 0.00 0.00 
14 2-1 rans~4-trans-octadienal 0.00 0.00 
15 decanal 0.00 0.00 
16 2-trans-nonenal 0.00 0.00 
17 2-trans-4-trans-nonadienal 0.05 0.17 
18 2-trans-4~trans-decadienal 0.00 0.00 
19 unknown 0.04 0.04 
20 unknown 0.00 0.00 

Âmounts expressed as yg of TCPH-derivative found in 40 mequiv. 
peroxide. 

Înternal standard. 

Ît has not been established whether 3-cis-hexenal would rear­
range to 2-trans-hexenal in this procedure. If not, 3-cis-hexenal 
TCPH probably would migrate with the TCPH of hexanal. 
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Although both reduction methods resulted in increases in some 

carbonyl compounds, other peaks were decreased by an initial reduction 

procedure indicating that some hydroperoxide scission had occurred in 

the TCPH procedure. In most cases, the SnClg reduced the peak size more 

than the HI and produced fewer artifacts. The relative size of most 

of the artifacts created in all three of the treatments was small when 

compared to an oil having a PV of 40. Thus, the problem of artifact 

production was not an overwhelming one. Moreover, one must suppose 

that all the carbonyl compounds that were found were not artifacts 

of the method, but were formed by decomposition of the linoleic acid 

hydroperoxide during its isolation. It is difficult to explain the 

formation of peaks 1̂ 7 from the scission of linoleic acid hydroperoxide, 

but it is possible that they came from the contamination of the lipoxy­

genase enzyme used in the preparation of linoleic acid hydroperoxide. 

The enzyme may have contained residual linolenic acid, or llnolenlc acid 

hydroperoxide or its breakdown products. Also, solvent contamination 

may have been responsible for some of the shorter-chained compounds. 

When only the compounds that might have come from linoleic acid hydro­

peroxide are considered, the SnClg reduction column did an excellent job 

in removing them. 

Soybean oil - total volatiles 

For comparison, the effects of the reducing columns were tested by 

a procedure entirely different from the TCPH method. Total volatiles 

(TV) produced from soybean oil were measured by Jackson's procedure, 

before and after treatment, by each of the reducing columns (Jackson and 
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Giacherio, 1977). A chromatogram of the nonreduced oil and a comparison 

of each reduction are shown in Figure 7. 

As would be expected, great decreases in peak sizes were achieved 

with each reduction method. Since the TV method entails hydroperoxide 

breakdown, these results are reasonable. Reduction of the hydroperoxides 

to their alcohols should result in fewer volatiles. By using either of 

the reducing columns before measurement of TV, a good estimate of only 

the volatiles actually present in an oxidized oil should be possible. 

These combined procedures could prove to be a very reliable measure of 

oxidation. 
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Figure 7. Chromatogram of the TV's before and after reduction of soybean 
oil hydroperoxides. GC capillary column is 10-m SE-30, 
attenuator 15, electrometer setting 10"̂  ̂
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SUMMARY 

Methods for the quantification of carbonyl compounds in oxidized 

fat were explored by conversion of carbonyls to their trichlorophenyl-

hydrazones. Use of a TCPH-Celite reaction column and subsequent frac­

tionation of the TCPH-carbonyls on alumina failed to allow separation 

of the more polar carbonyls from fatty materials. A one-column 

Florisil procedure, which provided both dérivâtization of the TCPH-

carbonyls and their isolation from fat, did not result in complete 

resolution from the long-chain hydrocarbons present in natural fats. 

Finally, a two-column method was developed in which the hydrocarbons 

were first removed by passing a solution of fat in cyclohexane through 

a Florisil column. This was followed by elution of the carbonyls and 

other fatty materials from the Florisil column with 100% ether, 

dérivâtization of the carbonyls with TCPH in the presence of Florisil, 

and subsequent fractionation of the TCPH-carbonyls on a second Florisil 

column. Recoveries of 100% were achieved for most of the 2-ketone and 

2-enal standards that were tested by this two-column method. 

Oxidation of soybean oil under various conditions resulted in 

differing amounts of carbonyls. During 55°C oxidation, rapid increases 

of hexanal, propanal or acetone, and possibly 3-cis-hexenal, as well as 

moderate growths of formaldehyde, 2-propenal, 2-trans-heptenal, 

and nonanal were noted. Light-oxidation produced a large amount of 

2-trans-heptenal, moderate amounts of acetaldehyde, pentanal and 2-

trans-4-trans-decadlenal, and many smaller peaks. Oxidation of the oil 

at 30°C resulted in a carbonyl pattern similar to that of the 55°C 
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oxidation. Hexanal, propanai or acetone, formaldehyde, and possibly 

3~cis-hexenal were particularly noted. Peroxide value determinations 

and sensory tests failed to detect small differences in oxidized oils 

shown by carbonyl-TCPH profile. 

The study of artifact production from the hydroperoxides in fats 

and oils during the TCPH procedure was accomplished by passing the oil 

through reaction columns of SnClg or HI to reduce hydroperoxides before 

analysis by the TCPH procedure. Some hydroperoxide scission to carbonyls 

was shown to occur in the TCPH procedure as well as in the reduction 

methods. These artifacts could be identified and their effect minimized 

by comparing carbonyl analyses before and after reduction by SnClg. 

When purified linoleic acid hydroperoxide was subjected to the reduction 

and TCPH procedures, it also produced carbonyl artifacts. 

The reduction columns that were developed may prove useful in 

other methods for the determination of carbonyls and volatiles in fats 

and oils. The total volatile analysis of an oil after reduction showed 

great decreases in peak sizes compared with a nonreduced sample, because 

initial conversion of the hydroperoxides to alcohols in the reduced oil 

avoids decomposition of hydroperoxides to volatiles. 

The TCPH procedure should be useful in studying the contribution 

of specific groups of carbonyls in an oxidized oil to its off-flavor. 

Predictions of an oil's quality based on its carbonyl profile could 

then be developed. Moreover, methods for decreasing or eliminating 

some potent carbonyls could result. The study of the scission reactions 

during oxidation and the effect of pro- and antl-oxidants could also 

be explored by the TCPH method. 
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A better blank and, thus, better sensitivity should result from 

improved clean-up procedures for the TCPH. Measurement of compounds 

down to 1 ppb rather than to the current 0.1 ppm limit should be 

possible. 
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